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We study the distributions of money in a simple closed economic system for different
types of monetary transactions. We know that for arbitrary and random sharing with
locally conserving money transactions, the money distribution goes to the Gibb’s dis-
tribution of statistical mechanics. We then consider the effects of savings, etc. and see
how the distribution changes. We also propose a new model where the agents invest
equal amounts of money in each transaction. We find that for short time-period, the
money distribution obeys a power-law with an exponent very close to unity, and has an
exponential tail; after a very long time, this distribution collapses and the entire amount
of money goes to a tiny fraction of the population.
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1. Introduction

Economics deals with the real life around us. The area of economics is not only re-

stricted to the marketplace but also covers almost everything from the environment

to family life! Economics is the study of how societies can use scarce resources effi-

ciently to produce valuable commodities and distribute them among different people

or economic agents.1,2 Financial markets exhibit several properties that characterize

complex systems. For financial markets, the governing rules are rather stable and the

time evolution of the system can be continuously monitored. Recently, an increasing

number of physicists have made attempts to analyze and model financial markets,

and in general, economic systems.3,4 The physics community took the first interest

in financial and economic systems, when Majorana wrote a pioneering paper5 on

the essential analogy between statistical laws in physics and in the social sciences.

This off-the-track outlook did not create much interest until recent times. In fact,

prior to the 1990’s, a very few professional physicists like Kadanoff 6 and Montroll,7

took much interest in research in social or economic systems. Since 1990, physicists

started turning to this interdisciplinary subject, and their research activity is com-

plementary to the most traditional approaches of finance and mathematical finance.
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It may be surprising to the students of physical sciences but the first use of the

power-law distribution was made by an Italian social economist Pareto, a century

ago, who investigated the wealth of individuals in a stable economy by modeling

them using the distribution

y ∼ x−υ ,

where y is the number of people having income greater than or equal to x and υ is

an exponent which he estimated to be 1.5.8 Almost during the same time, the first

formalization of a random walk was made by a French mathematician Bachelier in

his doctoral thesis,9 where he used the increments of Brownian motion to model

“absolute” price changes. A major part of the recent efforts made by physicists has

gone to investigating the nature of fluctuations and their distributions in the stock

markets.3 We believe that a thorough understanding of the statistical mechanics of

the money market, especially the studying of the distribution functions, is essential.

There have been some very interesting papers along this line.10–14 Here, we make

a very brief review of the earlier models and then propose a new variant where

the agents invest equal amounts of money in each transaction. We find that for

short time-period, the money distribution obeys a power-law with an exponent very

close to unity, and has an exponential tail; after a very long time, this distribution

collapses and the entire amount of money goes to a tiny fraction of the population.

2. Brief Review of Models and Distributions of Money

We consider a model of a closed economic system where the total amount of

money M is conserved and the number of economic agents N is fixed. Each eco-

nomic agent i, which may be an individual or a corporate entity, possesses money

mi. An economic agent can exchange money with any other agent through some

trade, keeping the total amount of money of both the agents conserved. We as-

sume that an agent’s money must always be non-negative and therefore no debt is

permitted.

2.1. Random transactions

Let an arbitrary pair of agents i and j get engaged in a trade so that their money

mi and mj change by amounts ∆mi and ∆mj to become m′i and m′j , where ∆mi is

a random fraction of (mi+mj) and ∆mj is the rest of it, so that conservation of the

total money in each trade is ensured. The money distribution goes to the equilibrium

Gibb’s distribution15 of statistical mechanics: P (m) = (1/T ) exp(−m/T ) where

“temperature” T = M/N , the average money per agent in the market, satisfying

P (mi)P (mj) = P (mi +mj).

Extensive numerical simulations show that this and various modifications of

trade, like multi-agent transactions, etc., all lead to the robust Gibb’s distribution

(see Fig. 1), independent of the initial distribution the market starts with.12 So,

most of the agents end-up in this market with very little money.
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Fig. 1. Histogram of money, obtained from computer simulations made for agents N = 1000 and
total money M = 1000. Note that in the figure, the money has been scaled by the average money
in the market.

2.2. Transactions with constant saving

Let us introduce the concept of “saving”, which is a very natural and important

ingredient in economics, in our model. We assume that each economic agent saves a

constant amount of moneym0 before trading. Let us now consider that an arbitrary

pair of agents i and j get engaged in a trade so that their money mi and mj change

by amounts ∆mi and ∆mj to become m′i and m′j ; ∆mi = ε(mi +mj − 2m0) and

∆mj = (1 − ε)(mi + mj − 2m0), where ε is a random number between zero and

unity, and m′i = m0 + ∆mi and m′j = m0 + ∆mj after the trade. In this case, the

lower limit of money that an agent is allowed to possess actually changes from zero

to m0. Conservation of the total money in each trade is ensured, as earlier.

The probability distribution of money still remains as Gibb’s distribution (see

Fig. 2) but the money corresponding to maximum probability mp, shifts from zero

(or very little money) to m0, and the “temperature” T changes. When m0 = 0, we

get back the case of Sec. 2.1. On the preceding page.

2.3. Transactions with fractional saving (marginal propensity

of saving)

We now consider the case where each economic agent saves a fraction λ of its money

mi before trading.11 This constant fraction of saving λ is called the “marginal

propensity of saving” and is a very important quantity in economics.
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Fig. 2. Histogram of money for different saving amounts m0 = 0.2 and m0 = 0.8, obtained from
computer simulations made for agents N = 1000 and total money M = 1000. Note that in the
figure, the money has been scaled by the average money in the market.

Here, we choose randomly two agents i and j having money mi and mj , re-

spectively. Then ∆mi = ε(1 − λ)(mi +mj) and ∆mj = (1 − ε)(1 − λ)(mi +mj),

where ε is a random number between zero and unity. Then m′i = λmi + ∆mi and

m′j = λmj + ∆mj after the trade. Conservation of the total money in each trade is

ensured, as earlier.

The results for the equilibrium distribution P (m) are shown in Fig. 3, for some

values of λ. The real money exchanged randomly in any trade is less than the

total money, because of the saving by each agent. This destroys the multiplicative

property of the distribution P (m) (seen earlier for λ = 0) and P (m) changes from

the Gibb’s form to the asymmetric Gaussian-like form as soon as a finite λ is

introduced. The λ = 0 case, the same as in Sec. 2.1, on the page before, was

practically a random-noise dominated one and therefore effectively a noninteracting

market. Introduction of a finite amount of saving (λ 6= 0), dictated by individual

self-interest, immediately makes the money dynamics cooperative and the global

ordering (in the distribution) is achieved.

An important feature of this humped distribution P (m) at any nonvanishing λ is

the variation of the most probable money mp(λ) (where P (m) becomes maximum)

of the agents.11 We have, mp = 0 for λ = 0 (Gibb’s distribution) and most of the

economic agents in the market end-up losing most of their money. However, even

with the pure self-interest of each agent for saving a factor λ of its own money in

any trade, a global feature emerges: the entire market ends-up with a most-probable
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Fig. 3. Histogram of money for different saving propensity factor λ = 0.2 and λ = 0.8, obtained
from computer simulations made for agents N = 1000 and total money M = 1000. Note that in
the figure, the money has been scaled by the average money in the market.

money mp(λ). This mp(λ) shifts in an interesting manner from mp = 0 (for λ = 0)

to mp → T (for λ → 1). The half-width ∆mp and the peak height Pmp of the

equilibrium distribution scales practically as (1−λ)1/2 and (1−λ)−1/2, respectively.

We also note that each individual’s money mi fluctuates randomly. Since the total

money is conserved, 〈mi〉 remains constant (= T ) here, while ∆mi goes down

with λ as (1 − λ). This is because at any time the agents keep a fixed fraction of

their individual money and receive a random fraction of the money traded that is

proportional to (1 − λ).

3. Model and Simulation Results

We now introduce a new model where we assume that both the economic agents

invest the same amount of money mmin, the minimum money between the agents.

We choose randomly two agents i and j having moneymi andmj , respectively. Thus

2mmin is the real money which is available in the market for random sharing. Then

∆mi = ε2mmin and ∆mj = (1 − ε)2mmin, where ε is a random number between

zero and unity. Then m′i = (mi−mmin) + ∆mi and m′j = (mj −mmin) + ∆mj after

the trade. Conservation of the total money in each trade is ensured, as earlier. Note

that we may rewrite the amounts of money after trade as m′i = mi + αmmin and

m′j = mj −αmmin, where α(= 2ε− 1) is a random fraction whose absolute value is

less than unity, i.e. −1 < α < 1 and mmin is either mi or mj , whichever is less. We
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consider one transaction between any arbitrary pair of agents as a unit of “time”,

t. We made computer simulations for agents N = 1000 and the total money in the

market M = 1000 and then took averages over 5000 different configurations. We

studied the money distribution P (m) at different times.

The money distribution P (m) for time t = 10 000 is shown in Fig. 4. We find

that the distribution obeys a power-law: P (m) ∼ m−υ, where υ is an exponent, and

has a tail which falls off exponentially (∼ exp(−αm)). The numerically fitted curves

(indicated by the solid line and the dashed curve in the figure) give the following

exponents: υ = 0.9 ± 0.01, which is very close to unity, and α = 0.25 ± 0.02. The

errors are obtained by eye-estimation.

We note that once an agent loses all its money, it is unable to trade any more

because mmin becomes zero and no other agent will invest money for trade with

this agent. Thus, a trader is effectively driven out of the market once it loses all its

money. In this way, after an infinite number of transactions have taken place, one

would expect that only one trader survives in the market with the entire amount of

money and the rest of the traders have zero money. In our numerical simulations,

we found that for t = 15 000 000, more than 99% of the traders have zero money and

the rest have the entire money of the market. This can be prevented, for example,
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Fig. 4. Histogram of money plotted in the double logarithmic scale, obtained from computer
simulations made for agents N = 1000 and total money M = 1000, at time t = 10 000. The solid
line is the numerically fitted line with slope υ = 0.9 and the dashed curve is the numerically fitted
exponential curve with an exponent α = 0.25. Note that in the figure, the money has been scaled
by the average money in the market.
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by government intervention via taxes, but we do not consider any such thing in

our model.
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